# **Structural Geology (Rock Deformation)**

#### Stress & Strain

| Stress == force (per unit area) on rock Strain == response of rock (change in shape or volume, deformation) |             |         |       |
|-------------------------------------------------------------------------------------------------------------|-------------|---------|-------|
|                                                                                                             |             |         |       |
|                                                                                                             |             |         |       |
|                                                                                                             | Compression | Tension | Shear |

#### Types of Strain (response to stress)

- Elastic reversible, will "spring" back if elastic limit is not exceeded (Ex: rubber band, seismic waves thru rock)
- Ductile (plastic) flows, deformation is permanent (no loss of cohesion) → folds (Ex: pipe cleaner, wire)
- Brittle breaks, fractures (loss of cohesion) → faults

Response of rx depends on...

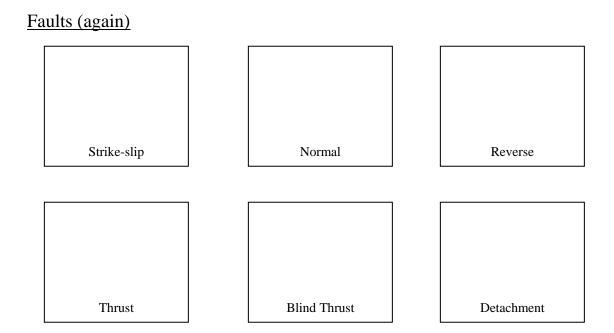
- 1. Rock type (rigidity)
- 2. Temperature (∝ depth)
- 3. Confining pressure (lithostatic pressure ) :.  $\infty$  depth
- 4. Rate of deformation (silly putty example)
- 5. Presence of water wet rx more ductile

Earthquakes only in shallow crust where brittle fracture is possible.

## Brittle Shear



No deformation

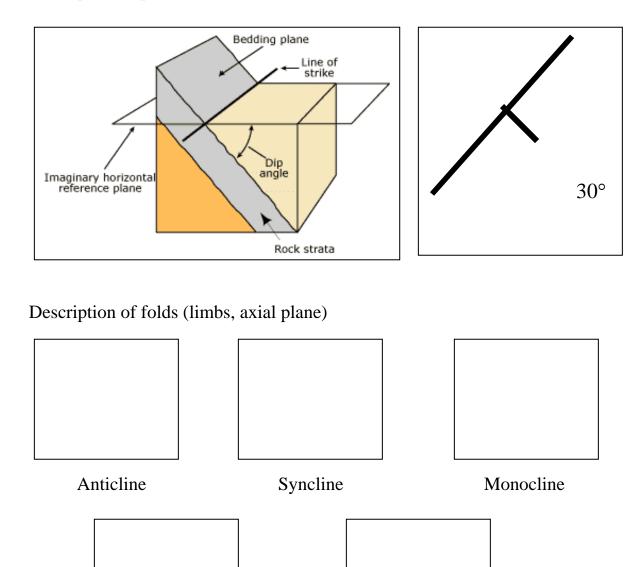

brittle deformation

ductile deformation

Maximum shear stress is at 45° angle.

Rock's "angle of internal friction" makes fractures closer to  $30^{\circ}$  /  $60^{\circ}$ .

:. Joints and faults indicate the direction of maximum compressive stress.




Footwall – the wall underfoot Hanging wall – the wall "overhead"

Horst & graben ( series of normal faults) Basin & Range

Thrust belts

# <u>Description of planar features</u> (beds, faults, joints, etc.)



Plunging folds

Overturned

Recumbant

## Dome & Basin